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results,7 its virtually quantitative stereoselectivity is particularly 
noteworthy. Assuming kinetic stereoselection the alternative 
transition states A and B have been examined. Indeed, B shows 

L2MQ-

H"tY 
variant, 15'-nor-18,19-dihydro-2,3-oxidosqualene (1) was inves­
tigated. Results summarized herein reveal the final product to 
be tricycle 2, presumably generated by hydrogen transfer from 
the side chain to the C ring of the evolving tricyclic intermediate. 

Coupling of trans-bromide 32 and trans,trans-sulfide 42 con-

a boat conformation of the developing cyclohexane, causing severe 
flagpole repulsion of one C(7) methyl and the C(I) hydrogen, 
whereas the evolving chair in A is perfectly attainable. We thus 
predicted A to be favored over B, which entails the desired cis 
disposition of H-C(5) and H-C(8) in 8. Unambiguous evidence 
for this stereochemical assignment was provided by the trans­
formation of 9 into (±)-khusimone as follows. Reduction of the 
carboxylic acid 9 with LiAlH4, mesylation of the primary alcohol8 

(MsCl, NEt3), and subsequent acetal cleavage (aqueous HCl, 
ether) furnished after crystallization the ketomesylate 10s (mp 
107.5-108.5 0C, ether-pentane, 86% yield from 9). Finally, 
intramolecular alkylation of 10 by brief exposure to /-BuOK, 
J-BuOH, and C6H6 furnished after sublimation (70-80 0C (bath) 
(0.04 torr)) pure (i)-khusimone (I;14 mp 72.5-73.5 0C, 98% 
yield), identified by comparison with authentic (-)-l (GC,15 IR, 
1H NMR, 13C NMR, and MS). In summary, (i)-khusimone 
was obtained from cyclopentenone by a sequence of nine synthetic 
operations in 11% overall yield. This strategic application of the 
remarkably regio- and stereoselective "magnesium-ene" reaction 
7 -* 8 exemplifies the potential value of this method in synthesis. 
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(14) No trace of epikhusimone was detected (1H NMR) in the crude 
cyclization product. 

(15) GC comparison of (±)-l with (-)-l was carried out by co-injection 
using a 24-m capillary column, OV 101, 220 0C. 
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In an endeavor to probe the rigidly enzyme controlled1 chemistry 
of ring C formation during lanosterol biosynthesis, the action of 
2,3-oxidoxqualene lanosterol cyclase on a particular substrate 
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situtes the integral part of the oxide 1 synthesis, accomplished 
by initial conversion of 4 to its anion with H-C4H9Li followed by 
addition of 3 (THF, -78 0C — room temperature). The resulting 
polyolefinic thioether 5 (69% yield) was then subjected to the 
action of Li/C2H5NH2 at -78 0C, yielding (66%) the acetal 6. 
Tritium labeling was carried out by quantitative hydrolysis of the 
acetal (3% aqueous HC104/THF, 40 0C) to the parent aldehyde 
and exposure of the latter to THF/3H20 (1 Ci/mL) to which had 
been added PCl5. On treatment with (C6H5)2SC(CH3)2 (THF, 
-78 0C), the radiolabeled aldehyde was transformed (70%) into 
epoxide [4-3H]I, purified by prep TLC (specific 3H activity 6.77 
X 10" dpm//*g). 

The enzymic cyclization was carried out by means of rabbit 
liver cyclase, as previously described.3 Incubation of 1 (2.20 mg, 
14.9 X 107 dpm) at 37 0C for 60 min with a clarified (10.5 X 
104g supernatant) enzyme preparation obtained from the mi­
crosomal fraction, followed by denaturization with 1 N methanolic 
KOH and then ether extraction, gave total product representing 
88% recovery of radioactivity. Appropriate boiled controls were 
carried out. After prep TLC, there were isolated starting material 
(81%), presumed 2,3-glycol (8%), and a sterol fraction (7%: 2, 
.Ry 0.28; lanosterol, Rf0.3l), which was purified by HPLC (ra­
dioactivity-based percentages of total enzymic product). 

High-resolution mass (M+ 414.3833) and time-averaged 360-
MHz NMR (benzene-rf6) spectra indicated that the enzymic 
product is a polycycle with the same elementary composition as 
oxide 1 and having an equatorial C-3 hydroxyl (5 2.98-3.11), five 
methyls on saturated carbon (0.82-1.06), an isopropylidene unit 
(1.63, 1.72), and a disubstituted double bond (5.33-5.42). Hy-
drogenation (Pd/C, EtOAc) afforded a tetrahydro product (m/e 
418). In order to locate the nonterminal site of unsaturation, 
oxidative olefin cleavage was carried out with NaI04/Os04 
(dioxane/H20; 25 0C). High-resolution mass (M+ - H2O 
288.2455) and NMR spectra revealed the major cleavage product 
to be a C20H34O2 aldehydro alcohol, resulting from loss of a C9 
side chain fragment. In confirmation of this assignment, NaBH4 

R'O AcO' 

7 R = CHO, R'=H 
J R = CH2OAc, R' = Ac 

,9 R,R ' = 0 

[Q R, R' = CHCO2Et 

JJ R = H, R^CH2CH2OH 

(2) Synthesis to be described elsewhere. 
(3) van Tamelen, E. E.; Hopla, R. E. J. Am. Chem. Soc. 1979,101, 6112. 
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reduction (THF, 25 0C) yielded a C20H36O2 diol, characterized 
as a diacetate. In the customary assumption4 that the structure 
and stereochemistry within the ABC framework correspond to 
those resulting from the normal biosynthetic pathway, structures 
2, 7, and 8 may be allocated to the enzymatic product from oxide 
1, the cleavage product, and the derived diacetate, respectively. 
A mass spectral comparison substance was synthesized from a 
tricycle of secure structure, the keto acetate 9,5 in order to support 
these assignments. Initial reaction with ethoxyacetylide5b (Et2O, 
-10 to -16 0C —• room temperature), followed by 5% aqueous 
H2SO4 (MeOH, room temperature) produced the a,/3-unsaturated 
ester 10. Lithium aluminum hydride reduction (refluxing THF) 
generated (in addition to the allyl alcohol) the saturated diol 11. 
The (GC facilitated) mass spectrum of its diacetate was quali­
tatively virtually indistinguishable (essential peak for peak 
matching, but differing intensities), from that of diacetate 8, in 
keeping with the skeleton and functionality of 8 and therefore 
structures 7 and 2. Buttressing of these assignments is embodied 
in the close similarity6 of the NMR (100 MHz, benzene-^) C-Me 
signals of 7 (S 0.76, 2 X 0.84, 1.04) and 11 (5 0.77, 0.81, 0.82, 
0.97), especially in regard to the ones at highest field (ring-C 
Me's), a particular comparison rendering unlikely a conceivable 
7/2 alternative, viz., the isomeric perhydrocyclopenta[a]-
naphthalene, for which a cyclopentanoid methyl peak at 8 ~0.69 
would be expected.7 
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In regard to the biological conversion of 2,3-oxidosqualene (1) 
to lanosterol (2), previous study1"7 of various enzymic and no-
nenzymic reactions of squalene oxide and its variants have led 
to inter alia the following observations and inferences regarding 
the cyclization process: (a) polycyclization involves A-ring for-
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Scheme I 

mation with a high degree of SN2-like participation of the 
neighboring, A6 ir bond5 and an ensuing series of conformationally 
rigid, partially cyclized carbocationic intermediates;4'5'7 (b) the 

oxide-tetra-ir-bond sequence (a, /3, y) in 3 constitutes the essential 
substrate requirement for tetracyclization, the nonoxidic C-5 
terminus and the methyls at C-6, -10, and -15 not being indi­
vidually necessary;1 (c) the chiral, trisubstituted oxide, A6, A10 

array (a) currently represents the minimum requirement for 
significant cyclase action;1 (d) distances (**, 3) between, and 
required conformational orientations of, C-2 and C-7,6 C-6 and 
A10 as well as C-IO and A14, must be optimized;1 (e) except for 
the terminating C-9 proton loss and for behavior in the A14 area, 
all chemical (including conformational) behavior can be quali­
tatively simulated in nonenzymic, related systems.1"3 By contrast, 
illuminating biochemical information regarding relationships 
between the A10 and A18 sites and that at A14 (/3) has been lacking, 
a shortcoming alleviated by the recent finding8 that 15'-nor-
18,19-dihydrosqualene 2,3-oxide (4) is transformed enzymically 

(8) van Tamelen, E. E.; Leopold, E.; Marson, S. A.; Waespe, H. R. J. Am. 
Chem. Soc, preceding communication in this issue. 
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